
ISRAEL JOURNAL OF MATHEMATICS, Vol. 46, Nos. 1-2, 1983 

RANDOM MATRIX PRODUCTS AND 
MEASURES ON PROJECTIVE SPACES 

BY 

H .  F U R S T E N B E R G  A N D  Y.  K I F E R  

ABSTRACT 

The asymptotic behavior of I]X.X._~'''XlVll is studied for independent 
matrix-valued random variables X.. The main tool is the use of auxiliary 
measures in projective space and the study of markov processes on projective 
space. 

Let  X~, X2, X3,. �9 �9 be a stationary stochastic process with values in the space of 

m • m real matrices. Let  II If denote a (Banach algebra) norm on the space of 

these matrices. It was proved in [3] that if the expectation E(Iog § IIX~ II) is finite, 

then 

(1) l im x, II 

exists with probability one. If the variables {X,} are independent with common 

distribution/z, the limit in (1) is a constant (by the zero-one law) depending only 

on/.t, say/3 (/x). Unlike the classical law of large numbers, the parameter/3 (p.) is 

not directly computable as an integral with respect to the measure/x. As a result 

the behavior of/3 (/z) as a function of tz is much more recondite and there are 

still simple questions that are unanswered. 

Here we return to a theme that was taken up in [2] expressing/3 (/z) in terms of 

/z and some auxiliary measures on the ( m -  1)-dimensional projective space. 

These auxiliary measures will also enable us to study the asymptotic behavior of 

the vector norms IIX, X,_1...  XlV I1 for v E R m. As an application of our analysis 

we present a stability result for /3( /z)  with respect to perturbation of ~. 

We remark that since this paper was first written similar results have been 

obtained by Hennion [4]. 
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The easiest way to prove the existence of the limit in (1) is to invoke 

Kingman's subadditive ergodic theorem ([7]). 

THEOREM (Kingman). Let W,,,, m, n = O, 1, 2 , . . . ,  m < n be a family of real- 

valued random variables satisfying 

(i) The distribution of W,,; depends only on n - m. 

(ii) For m < n < p, W,,~ <- W,,, + W.p. 

(iii) The expectation E ( W L )  is finite. 

Then with probability 1, the expression (1/n ) Wo, converges to a limit which may 

equal - ~. 

The law of large numbers for matrix norms now follows by taking W,,. = 

log tl x . x o _ , . . ,  xm +1 I1. 
A more precise result may be proved using Osoledec's "multiplicative ergodic 

theorem" {[8], [9]) which is a far reaching generalization of the results of [3]. 

According to Osoledec's theorem, if X1, X z , . " ' , X , , ' "  is a matrix valued 

stationary stochastic process with E (log + 11X~ II) < ~, then for almost every choice 

of the sequence X , , X 2 , ' " , X . , ' "  the limit of IIX, X . - I " ' "  Xlvl111" as n- -*~  

exists for every vector v. Here II [I is any (Banach space) norm on R ' .  From this 

follows the existence of lim [[X,X, 1"'" XIII 1/". 

If the process {X. } is ergodic it is easy to see that lira II X , X , - 1 . . .  X1 II TM is, with 

probability 1, a constant. On the other hand, in the Osoledec result, if we write 

(2) /3 (to, v) = lim II X. ( to)X.- l ( to) - ' '  X,(to)v II 1'", 

for almost all to, /3(to, v) usually depends non-trivially on v. We may therefore 

expect that for fixed v, /3(to, v) depends non-trivially on to. One result of our 

analysis is that if the {X,} are independent then /3(to, v ) d e p e n d s  only on v. 

THEOREM A. I f  the variables X1, X2," �9 ", X , , .  �9 �9 are independent and identi- 

cally distributed in GL(m,R)  and if E(iog+ll X, II)< ~, then 

l i m  I I X . X o - ,  " " X l v  II 1'o 

exists with probability one for every v ~ R", and is a constant depending on v and 

on the distribution of X~. 

In [5] it is shown that/3(ix) is not a continuous function of ix with respect to 

the weak topology on probability measures ix. Namely, one may have ix.--9 ix 

weakly, with ix., ix probability measures on unimodular m • m matrices (with 

uniformly bounded support) and nonetheless 
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(3) /3 (/~) > lim sup/3 (/~n). 

(The opposite inequality cannot take place!) We shall present here a family of 

measures ix for which the instability (3) does not occur. 

We shall assume that/z  {non-invertible matrices} = 0. Then we can associate to 

/z the smallest closed subgroup G~, C GL(m,R) for which tz(G,~) = 1. Given a 

sequence of probability measures {/z~} on GL(m,R) we shall say that /zk---~/z 

weakly and boundedly if f fdlz~--*ffdtz for all continuous functions f(g) with 

compact support on GL(m, R), and if 

s log+ ]l g ll dlzk (g ) + ~,-'II>N l~247 l[ g-l ll dtz (g )--~ O 

as N---~ o0, uniformly in k. 

THEOREM B. Let iz be a probability measure on GL(m, R) for which G,, has 
the property that there exists at most one non-trivial subspace V c R "~ for which 
gV C V for all g ~ G,. Then if iz, ~ Iz weakly and boundedly, we will have 

/3 ( m ) - ,  /3 ( ) . 

1. Random walks and laws of large numbers 

Let M be a compact metric space and let ~ ( M )  be the space of probability 

(borel) measure on M. ~ ( M )  is a compact metric space in the topology of weak 

convergence. A continuous map M---* ~ (M) assigning to each x ~ M a measure 

/zx defines a random walk on M. We define the corresponding Markov operator 

by 

Pf(x) = J f(y)d/z.  (y) 

and the adjoint operator P* is defined on ~ ( M )  by 

n*v (A  ) = [ i.t,(A )dv(x) 

for A a borel set in M. 

A stochastic process {Zn, n = 0, 1 , 2 , . . .  } is a Markov process with transition 
probabilities {/z,} if 

P{Zn+,EA IZo, Z , , . . . ,Zn}=lXz . (A) .  

The transition probabilities {/.t. } are determined by the operator P and so we can 

speak of a Markov process corresponding to P. The principal tool that we will use 

in our discussion is the following general result: 
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THEOREM 1.1. Let {Zn, n = 0 , 1 , 2 , "  "} be a Markov process on M corres- 
ponding to the operator P on f i (M) and let f E fi(M). With probability one, 

(1.1) lira sup ~ [(Z~) _-< sup [dv I~, E ~ (M) satis]:ying P*v = v . 
n - - ~  n = 0  

The proof of the theorem is based on a lemma which appears in [2] and which 
we reproduce here for the reader's convenience. 

LEMMA 1.2. I[ [ = g -- Pg [or some g E f i (M) then with probability 1, 

1 
N+I f(zn)--, 0. 

PROOF. Let W~§ = Y.~=o(Pg(Zk)- g(Zk§ We have 

+__L E(W.+,IZo, Z ~ , . . . , Z , ) =  W. n + l  E ( P g ( Z . ) - g ( Z . §  Z ~ , . . . , Z . )  

- -  

- - W n ,  

since by the definition of a Markov process 

E(g(Z~§ Zo, Z , , .  . ., Z , )  = Pg(Z~). 

Hence { W, } forms a martingale which, by the boundedness of g (x), has bounded 
second moments. This implies that W, converges with probability 1, and by 

Kronecker's lemma it follows that 

rl 

~--1 {Pg(Zk ) -  g(Zk§ = o(n ) 

and rearranging terms we have the assertion of the lemma. 

LEMMA 1.3. Let[ E f i (M) be non-negative. Then [or any e > 0 we can write 

(1.2) [ = Pg - g + h 

where g, h E fi(M), and where h satisfies 

(1.3) II h II-=< sup { f  [d~, Iv E ~(M)satisfies P*~,= v}+e.  

PROOF. Let ~g C fi(M) denote the subspace of functions of the form Pg - g. 

Let ~ denote the distance of [ to ~. By the Hahn-Banach theorem, there exists a 
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continuous linear functional on ~ ( M )  vanishing on ~,  having norm 1 and taking 

on the value 6 at [. Thus there is a (signed) measure ;t with IIA II = 1, P * A  = A, 

and f fdA = 6. Now if we decompose )t into its positive and negative parts 

~t = ~ + - , ~ -  we find P * ~ + - P * A - = ~ + - ~  -, whence P*~+_---~+, P*)t-_->A - 

which implies P*X~-=X ~-. Let Vo=~+/llx+ll. Then P*vo=vo and ffdvo>= 

f fdA = 6. By definition of 8 we can find Pg - g ~ ~ so that 

IIf-(Pg - g)lL  --< 

Letting h = f - ( P g -  g) we obtain the assertion of the lemma once we check 

that 

8 <-_sup { f fdv l v E • (M)  and satisfies P*v = v} . 

But since v = Vo satisfies f[dvo >-_ ~ this concludes the proof. 

To prove Theorem 1.1 we first note that adjusting f by a constant, we may 

assume that [ is non-negative. We then have the decomposition (1.2). Now 

clearly 

1 
lim sup ~--~--~ ~ h(Z)<=llhl[~ 

rl=O 

and so by (1.3) we complete the proof of the theorem. 

Note that in the course of the proof we have also established the existence of 

measures/z  with P*v = v. This was based on the Hahn-Banach  theorem. One 

can also prove this using an appropriate fixed-point theorem. In any case, the set 

on the right of (1.1) is non-empty. 

THEOREM 1.4. Let {Z,,  n = O, 1, 2 , . "  } be a Markov process on M corres- 

ponding to the operator P and let [ ~ ~ ( M )  be such that for all v ~ ~ ( M )  for 
which P* v = v the integral f [dv takes on the same value ~ Then with probability 

one 

as N ---~ ~176 

1 N 

N+1 oI(z ) 

This follows from Theorem 1.1 applied to the functions f and - f .  

2. The behavior of IIx xn-,.,. X,v II 
We shall apply the results of the foregoing section to the following situation. 

Set G = GL(m, R), the locally compact group of invertible m x m matrices, and 
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let pm 1 denote the (m -1) -d imens ional  projective space. We suppose we are 

given a probabili ty measure/Z on G, and we suppose for the moment  tha t /z  has 

support  on a compact  subset Q c G. Let M = Q • p,,-1. 

We may identify P"-~ with lines through the origin in R m and since the 

matrices of G send these lines to themselves, we have a natural action of G on 

Pm-k For g ~ G  and u E P "-1 we shall indicate this action by gu. Let 

X , , X 2 , . . - , X , , " "  be a sequence of independent identically distributed G -  

valued random variables with distributions /Z. The sequence of M-valued 

variables 

(2.1) 

Zo = (e, u), z , = ( x l , x l u ) ,  z==(x2 ,x2x ,  u) , . . .  

zn = (xn, x . x . _ , . . .  X,u) 

defines a Markov process on M corresponding to the Markov operator  

Pf(g, x) = ~ f(g', g'x)d/z(g') 
J 

(2.2) 

and 

E(f (zo)  I z o, z , , . . - ,  zn_,) = E ( f ( x o ,  x~xn  , . . .  x , u ) l  x , , .  . ., xo_,)  

f f(g', g'Xn-~... X,u)d/z(g') = Pf(Z._,). 

Let h be a measure on M satisfying P*A = h. By (2.2) 

where v is the projection of h on P ' - I .  If f ( g , x ) =  ~ (x )  then 

For any v E ~ ( P "  t) define /Z * v by 

f ,v = H ~(gx)d/z(g)dv(x). 

We say that v is ~z-stationary if /Z * v = v. Note that if Y is a P ~ % v a l u e d  

random variable, and X is a G-valued  random variable independent  of Y and if 

X and Y have distributions /z and v respectively, then X Y  has distribution 
/ z * ~ .  

If conversely v is a /z-stationary measure and )t is defined by 
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(2.4) f fdx=ff fCg, gx)d~(g)dv(x), 
then P*X = )t. For  

= f / (g ' ,  g'y)dtz(g')dv(g) 

= f  fdA. 

We thus obtain a one- to-one  cor respondence  be tween  )t E ~ ( M )  with P*A = 

)t and v E ~ ( p , . - 1 )  w i t h / z  �9 v = v. 

For  u E P"-~ let fi E R = deno te  any vector  ~ 0 on the line through the origin 

corresponding to u. For  any g E C the expression II a II/11 g- 'a  II depends  only on g 

and u. We can there fore  define a cont inuous  funct ion on  M :  

p(g, u)  = logt[ fi II/[[g-'a II. 

Consider  now the averages 

We  have 

N + I  p(Z~). n = O  

p (Zo) + p (Z~) + - . .  + p (ZN) = (log I] X~ ti II - log II ~i II) 

+ (log II x 2 x ,  fi 11- logl iX,~ II) + - - -  

§ ( l o g  IIxNx,, , . . .  x , c ,  II 

-logllX~_,x~-~.- .x,~ll) 

= l o g  I l x , ~ x , ~ - ,  �9 �9 �9 x , a  i t - l o g l l  a II- 
Consequent ly  

N 

i .2"=--oV'P(Z~ ) 1 IogI[XNXN-I " " " Xlfi lI + O(1). 
N + I = = - g - ~  
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We wish to apply Theorems 1.1 and 1.4. We use the correspondence between A 

and P*A = A and/z-stationary v and we find that if A corresponds to v, then 

f p ( g , u ) d A ( g , u ) = f f  p(g, gu)dl~(g)dv(u) 

= f f  log]lgf~lldtz(g)dv(u). 

We can now formulate the result. 

THEOREM 2.1. If l.~ is a measure of compact support in GL(m,R)  and if {Xn} 

is a sequence of i.i.d, random variables with values in GL(m,R)  and with 
distribution !~, then for any v E R m we have with probability one, 

any 
(LI 
of 

lim sup 1/N log IIXNXN_I " " X lv  II 
N ~  

(2.5) 

IlaLI 

Moreover, if for all ~-stationary measures v the expression 

log IIt~II d~,(g)dv(u) 

takes on the same value 13, then with probability one 

(2.6) I log ii x, ,x, ,_~. .  "x~v If - /3 .  

If v~, . . . ,  v,, form a basis of R"  we can identify II g II with max H gv, tl. (Note that 

two norms H ]11, H H2 either on matrices or on vectors will satisfy 
lh/n H2) lm --~ 1.) Theorem 2.1 implies a corresponding result for the behavior 

I log II XNX~-~ . "  X~ 1]. 

But we shall immediately see that a stronger statement can be made here. 

Let v be some /~-stationary measure. Let U0 be a P~"-~-valued random 

variable of distribution v defined simultaneously with the i.i.d, sequence {X~} 

and assume it is independent of all the latter. Now define 

--- ( x n ,  X n X n - ,  " " " X ,  U o ) .  

Z~ is again a Markov process corresponding to the Markov operator P. If we set 
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U n  = X n X n - - l "  " " X l  Uo we see inductively that the distribution of U. is again V 

since U. = X,U.-1 and X. and U._I are independent. It follows that Z ~ =  

(X., U.)  is a stationary process. (A Markov process with stationary transition 

probabilities is stationary if the individual distributions remain the same.) We 

now apply the ergodic theorem to conclude that with probability one, 

1 IoglIXNXN-,"" .X, 0o11---) t~ (2.7) 

where t~ is a random variable satisfying 

(2.8) E(I~) = E(p(X,,X, Uo))= E(logl[X, Ool]) = f f log I~gfi ~ dtz(g)dv(u). Ilal[ 

Now t3 must take on values => E(I~) and so with positive probability 

1 
logllXNXN_l... X, II > E( /5)= f j  log [L 2 (2.9) l imsup ~ = I[ ti II dl~(g)dv(u). 

The lim inf in question is measurable with respect to the tail field of {X.} and so 

by the zero-one law it is a.e. constant. Thus (2.9) holds with probability one. 

Moreover,  the expression to the left in (2.9) does not depend on the choice of v. 

If we now set 

log dl~(g)dv(u)l v 

then 

~ ( P " - ' ) ,  g * v = v} 

lim inf 1 IIXNX -I"'" Xlll 

Comparing this with (2.5) we obtain 

THEOREM 2.2. If tz is a measure of compact support in GL(m,R) and if {X,} 

is a sequence of independent identically distributed GL(m, R)-valued random 
variables with distribution Ix, then with probability one, 

(2.11) lim I logllXNXN_,.. "X~ll = / 3 ( ~ )  

where [3(ix) is defined by (2.10). 

The foregoing results may be extended ~o the case of non-compactly sup- 

ported measures/z provided some boundedness restriction is imposed. We shall 

assume /z satisfies 
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(2.12) f [log + II g II + log + II g-1 I[ dp. (g) < oo: 

Let (~ denote the one-point compactification of the locally compact  group 
GL(m, R) and set M = (~ • pro-1. On M we define transition probabilities as 
before, setting 

Pf(g, x) = ~ f(g', g'x)d~(g') 

for all g E (~. For each positive T < oo we consider the function pr(g, u) defined 

as before by log(I [ a II/llg lfi ll) for IIg II, ilg-lll __< T and extended continuously to 
all of M with the same bounds. At  the same time consider p(g,u)= 
log(I[ ti [[/llg-~ti [[) defined on G x pro-1C M. Form {Zn} as before. Then 

1 ~ O(Z~)-  ~ - ~ ~  Or (Z~) 

(2.13) 
< 1 
= N + 1 ~ (l~ [[ Xn [[ + log + I[ X~ 1 [[ + log r)x sT (xn) 

where BT = {g [ max{J[ g II, [[ g-ill} > T}. By the ergodic theorem for the process 
{Xn} the right-hand side of (2.13) converges to the limit 

fat (l~ l[ l[ + l~ 1[ -1 [[)d/z (g) + T/z (Br) g g log 

_-< 2 ~ (log + I[ g [[ + log + [I g-1 [i)d/z (g). 
d / J  T 

By (2.12) this --> 0 as T ~ oo. It follows that for large T, the asymptotic behavior 
of [[ XNX~-1"" XlV 1[ can be estimated by integrals of pr with respect to measures 
A satisfying P*A = h. Comparing p with pr we find that 

I f  pdA - f prdh I <= fat (l~ + l~176 T)dlz(g) 

which converges to zero as T--> oo. The result is the following 

THEOREM 2.3. The conclusions of Theorem 2.1 and Theorem 2.2 are valid if 
the measure lz satisfies 

f [log+llg 11 + log+llg -lll]d/z(g) oo. < 

3. The filtration of R ~ for random matrix products 

We consider a fixed measure p on G L ( m , R )  satisfying 
m - 1  /~-stationary measure v on  P , let a(v) be given by 

(2.12). For any 
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We have 

/3(/z) = sup{a(v) [ v E ~(pm-l) and/z  * v = v}. 

We shall speak of/3(/z)  as the rate o1: growth of the matrix products for/z.  

Let N denote the compact convex subset of ~(p, ,-1) consisting of /z- 

stationary measures. To each v E N we can attach a stationary Markov process 

= (X., x . x . _ , . . ,  x ,  Uo) 

where U0 has distribution v. Assume that  Z~, is an ergodic process. Then with 
probability one 

lim ~ p(Z~.) 
n = O  

(3.1) 

1 IogIIXNXN-,' ' '  X10oll -- lim 

f f Ilgull d /z(g)dv(u)  = log II fi II 

by the ergodic theorem. We formulate this as follows: 

LEMMA 3.1. I f  V E N is such that Z~ is ergodic, then for v-almost every 
direction u, if v ~ R m-I is a vector in the direction u, then 

• log IIX~X~_,... X,v II ~ a(v) .  N 

LEMMA 3.2. The measure v with Z• ergodic are just the extremal points of N. 

PROOF. It is readily checked that if v is non-extremal then Z~, is non-ergodic. 

For the converse direction we use the fact that the invariant functions for a 

stationary Markov process {Z~,} have the form q~(Z~ for some function r on the 

state space ([1]). Since q~ can be assumed to take on the values 0, 1, there will 

exist sets A C t~ x P"- I  such that 0 < A (A) < I where A ~ ~ (M) corresponds to 

v E ~(p,,-1), and with (g', g'x)  ~ A for all (g, x) E A for /z-almost every g'. 

Then clearly A depends only on the second component: A = G • A ' ,  with 

g ' A '  C A '  for a.e. g' E G. We have 0 < v(A ' )  < I and the restriction of v to A '  is 

a /z-stationary measure. This shows that v is not extremal. 

LEMMA 3.3. fl(/z ) = sup{a(v)l  y E N ,  v extremal}. 
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PROOF. This follows from the Krein-Milman theorem which asserts that all 

of N is spanned by extremals. 

Suppose now that for all extremal measures u ~ N we had a ( u ) =  fl for a 

fixed/3. Then/3 =/3 (IX) and by Theorem 2.1 we would have with probability one 

1 
(3.2) lim ~ log II XNX~_,. .  . XI v I[ =/3 (I x ) 

for all v E R". If on the other hand (3.2) is not valid for all v, there must exist an 

extremal measure v with a(v)</3(IX).  Lemma 3.1 is valid for this measure v 

and we obtain a set of vectors v for which with probability one 

1 log I[X~XN_I.. "X,v [1---~ a(v) .  
N 

For any subspace L C R", let L denote the corresponding set of points in 

P ' -~,  i.e., the set of all directions represented in L. Let L be the set of vectors v 

for which 

(3.3) lim sup 1 log IIXNXN_,.. "X,v II <= a(v )  

holds with probability one. L is clearly a subspace of R" and by Lemma 3.1, 

v ( i )  = 1. On the other hand since a(v )  </3 (IX), by Theorem 2.2 it is clear that L 

is a proper subspace of R". So if we let Lv denote the minimal subspace for which 

v(i~) = 1, then Lv C L, so that L~ is a proper subspace of R"  and (3.3) is valid for 

all v ELv. 

LEMMA 3.4. I f  v is a Ix-stationary measure and L~ is the minimal subspace of 

R m for which v ( L ) =  1, then gL~ = L~ for Ix-almost every g ~ GL(m,R).  

PROOF. Since v is Ix-stationary 

= IX * , , (s  = f v(g-l L )dIx (g ). 

If this is 1, then v(g-~E,) = 1 for a .e .g .  But then g- lL  D/S and so gL = L. 

Let us say that a subspace L C R '~ is Ix-invariant if gL = L for Ix-almost every 

g E GL(m,R).  We now have 

THEOREM 3.5. Assume the measure IX satisfies the condition of Theorem 2.3. 

Then either for every v E R" and with probability one 

1 logl[XNXN_l.. " X lv  II =/3(IX), (3.2 bis) lim 
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or ]:or some proper tx-invariant subspace L C R", for every v E L, 

1 logllxNx  , . . .  x , v  II < (3.4) lim sup ~ = 

where a < r again with probability one. 

If L is a tz-invariant subspace of R"  then for /z-a lmost  every g we obtain a 

transformation g I L of L ---> L. Thus tx determines a measure txL on GL(L) .  For 

each/x-invariant  subspace L C R" we then have a rate of growth/3 (/xL) which 

can be characterized as the infimum of a for which (3.4) holds. 

We note that /3(/xL,+~,,)= max{/3(/x,,),/3(/zL,,)} if L' ,  L" are both /z-invariant 

subspaces. It follows that if there exists any subspace with/3(IXL) < fl(/~) then 

there is a unique maximal such subspace. We denote this subspace by L~. 

The alternative presented in Theorem 3.5 is that either (3.2) holds with 

probability one for every vector v E R m, or L~ is a non-trivial subspace of 11". 

Once again let L be a /z-invariant subspace of R ~. For ix-almost every g, 

gL C L and g induces a transformation of Rm/L ---~R'/L. Thus p~ determines a 

measure /x,-/L on GL(Rm/L).  

LZMMA 3.6. If  L is a tz-invariant subspace of R m 

/3 (/z) = max{/3 (~L),/3 (/x~-/L)}. 

PROOF. Choose a basis of R"  whose initial vectors form a basis of L. The 

matrices g in the support o f / x  have the form 

g = g22! 

where g~ are submatrices, gu corresponding to the restriction of g to L and g22 

corresponding to the action of g on Rm/L. Forming the product XN, XN-1 �9 �9 �9 X~ 

of matrices in this form, and identifying/3(/z) with the rate of growth of the 

random product, we see immediately that 

(3.5) /3(~,,)_-</3(~), /3 (~,-,~) ==-/3 (~). 

Now suppose that both of these inequalities are strict. Consider the product 

Ch)  \ 0 " 

Let e > O. When N is large, then with probability close to one we will have 

[IA;,II,IIA'kII<=e"+~'N~'"L ', IlBhll,llBX, ll<-_e 'l+~'N~'~', 

t t t  II cNII, II CNll = e 
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Hence with probability close to one, 

II X2NX2N-, " " X1 II--< e"+E)zN~%) + e "*~)2N~'"'m'L) 

+ eO+E)N(t3(t')+~(t'L)) + eO+~)Noso')+~3~a~/t). 

But this is also larger than e" ~)2N~) which shows that both inequalities in (3.5) 

cannot be strict. This proves the lemma. 

LEMMA 3.7. With LI defined as above (L~ may be {0}), the measure ixa~/c has 

the property that with probability one 

L log IIX~XN-,. ' '  X,z 11--"/3(~) N 

for each z ~ R ~ / L , ,  where for g ~ GL(m,R) with gL~ = L, we denote by ~, the 

induced transformation on Rm /L~. 

PROOF. We can write, with a harmless abuse of notation, 

where Y, denotes the restriction of X, to L1. By Lemma 3.6, since /3(]J~LI ) < 
13 (/~) we must have/3 (/Xa~/L,) = /3 (/.t). NOW apply Theorem 3.5 to tZR~/LI. If the 

assertion of Lemma 3.7 were not true, R=/L~ would contain a proper subspace 

with a rate of growth </3(I-tR'/c,) = /3(/X). We could then write 

Y. z .  

0 0 X"/  

where the random products of 2(" have smaller rate of growth than/3 (/z). But 

also Y. leads to a smaller rate of growth since /3(/XL,)< /3(/Z). The same is 

therefore true of 

x'}  

according to Lemma 3.6. But this would contradict the maximality of L~. This 

proves Lemma 3.7. 

This leads to 

PROPOSITION 3.8. For any v ~ R m with v ~ L~ 

1 IogHXNXN-I" ' "  X , v  LI lim 

exists with probability one and equals/3 (tt). 
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Now L~ is invariant with respect to the matrices in the support of/z.  We can 

carry out the same analysis for L~ as we did for R m and we find a proper subspace 

L2 C L~ containing all the /z-invariant subspaces with/3(/ZL) </3 (/zL). For any 

v EL2\L~  we will have 

1 Iog[IXNXN_I'-" X~v [[ =/3(/ZL,). lim 

We repeat this procedure till we have exhausted R". The final result is the 

following 

THEOREM 3.9. Let/Z be a probability measure on GL(m,R) satisfying (2.12). 

There is a sequence of subspaces 

0CL,  C L r - I C . . -  C L 2 C L 1 C L 0 = R  " 

and a sequence of values fl(/z ) = ~o(/z ) > fl,(/z ) > fl,(/z ) > . . .  > fl(r)(/z ) such 
that if v E Li \Li+~, then with probability one 

1 logllXNXN-a'' '  XlV [[ = ~(i)(j[,L). limo 

The subspaces {Li} and the growth rates/3(')(/Z) are related to the extremal 

/z-stationary measures v in the following way. By Lemmas 3.1 and 3.2 we know 

that if v is an extremal /z-stationary measure then 

a ( v ) =  f f logllgfiJ[ d/z(g)dv(u)  
Ilal[ 

is the growth rate for some vector v. Therefore by the theorem a (v) =/3~ for 

some i. Since this growth rate characterizes the vectors of L~ \ L,§ we must have 

v ( L , \ L , §  or v ( /~ )=  1, v(/~+,)=0. 

Thus for extremal/z-stationary v, the functional a (v )  can take on only the 

values fl~ Consider all the measures v with a ( v ) ~  

/3~~ and let ~ he the set of all subspaces L with v ( L ) =  0 for these v. On 

each such subspace the growth rate is </3(~ and therefore the same is true of 

the sum. These considerations lead to the following 

THEOREM 3.10. The subspaces {L,} and the [3~ of the foregoing theorem 
can be obtained as follows. As  v ranges over all extremal ~z-stationary measures, 
there are finitely many values of a (v )  that can occur. These values am fl(/z) = 
flO(/z)> f l l ( / z ) > . . .  > fl(r)(/z). Let ~ be the set of all /z-invariant subspaces 

satisfying v (I_,) = 0 for all v with a (v) > fl")(/z ). Li is thus the sum of all subspaces 
in ~ and it is the unique maximal element of ~ .  
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Note that since for extremal measures a (v) can take on only finitely many 

values, the supremum 

/3(#) = sup{a(v) ] v E ~ ( P ' - ' ) ,  # * v = v} 

is attained for some extremal v: Moreover, any v for which v(/71) = 0 will satisfy 

a (v )= /3 ( /z ) .  We have 

COROLLARY. There exist #-stationary measures on ~(p , , -1)  satisfying v(E~) = 

O. For any such measure 

f]  l~ IIg ll {{u II d # ( g ) d v ( u ) = / 3 ( # ) .  

4. Perturbation of random matrix product 

We let # be a probability measure on GL(m,R) and, as in the preceding 

section, we say that a subspace L C R m is ix-invariant if gL = L for almost all 

g E GL(m, R) with respect to #. We denote by #L the induced measure on the 

group of linear transformations of L. The growth rate/3 (#) is defined by (2.11). 

PROPOSmON 4.1. Assume that for every i.~-invariant subspace L ~ {0} of R"  

we have /3 (/~L ) = /3 (# ). Let {#k} be a sequence of probability measures on 

GL(m, R) satisfying 

(4.1) ~,,,>r l~ (g)+  s ',,>r l~ 

as T --> oo uniformly in k. I f  #k ---> # weakly, i.e., if for all continuous functions f ( g )  

of compact support f fd#~ --> f fd#,  then/3(#k)-->/3(#).  

PROOf. By the corollary to Theorem 3.10, for each measure #k there exists a 

measure vk on P " - '  with #~ * v~ = vk and such that 

/3(#D = f f log lLg-~ d#~ (g)dv~ (u ). I1, 11 
Passing to a subsequence one can assume, without toss of generality, that the 

sequence vk converges weakly to a measure v* on pro-,. It is easy to deduce 

from the equalities #k * v~ = v~ that # �9 v* = v*. 

Now apply Theorem 3.10 to the measure/z. Since by hypothesis/3 (/~L) = 13 (#) 

for each #-invariant subspace L C R '~ the filtration {L,} corresponding to # 

must be trivial, having only the subspaces {0}, R m. Hence for every extremal 
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p.-stationary measure v, a (v)=/3 (p.) and so too for all/x-stationary measures. 

In particular 

I1 11 

On the other hand, if/zk--->/x, vk ~ v*, and (4.1) holds uniformly, then 

f f log  d k(g)avk(u)--, f f log  dlx(g)dv*(u). 

This proves that/3 (/xk)--~ 13 (/~) and thus completes the proof of the proposition. 

In particular, if the measure /~ is supported on a subgroup G~ CGL(m,R) 

which is irreducible, then/3 (/~) is "stable" in the sense that small perturbations 

of/~ subject to (4.1) lead to small changes in /3(/~). We can deduce the same 
result under the milder restriction that G,, possess at most one non-trivial 

invariant subspace. For suppose that L is the unique ~-invariant subspace, and 

decompose the matrices g E (3, into the form 

g = g22/ 

with gll the restriction of g to L and g22 the induced transformation on R"/L. By 

Proposition 4.1, if/3(txL) = fl0z) then we have stability. On the other hand, if 

/3(/-r </3(/z), then by Lemma 3.6, /3(/x,-/L)=/3(IZ). Now eonsider the trans- 
posed matrices 

and the corresponding measure '~. There is a unique non-trivial '/x-invariant 

subspace, L • and the restriction of 'g to this subspace is given by 'gzz. Now if we 

regard/3 (IX) as a rate of growth of matrix products it is clear that/3 (t~) =/3 ()x) 

and for the same reason /3(tXR'/L)= /3('tXLI). Since /3(txrm/L)=/30x), it follows 
that for the non-trivial 'tx-invariant subspace L l, 

/3 = 

Again we can apply Proposition 4.1 to conclude that we have stability for '~. But 

clearly this is equivalent to stability for p.. This proves Theorem B of the 
Introduction: 

THEOREM B. Let tz be a probability measure on GL(m, R) and let G, be the 

smallest closed subgroup of GL(m, R) which supports the measure I~. If  G~ has the 
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property that there exists at most one non-trivial subspace V CR '~ for which 

gV  C V for g E G~,, then whenever lzk ~ tx weakly and boundedly, [3(tzk )---~ [3(Iz ). 

A variant of Theorem B is the following result. 

THEOREM B'. Let tz be a probability measure on GL(m, R) and let G,, be the 
smallest closed subgroup of GL(m, R) which supports the measure tz. Let V C R m 

be an invariant subspace for G,, such that V is contained in any other invariant 

subspace. Assume that [3(tzv) = [3(tz). Then whenever tzk---~lz weakly and 

boundedly, [3 (lz~ ) ~ [3 (Ix). 

Clearly, the hypotheses of this theorem imply those of Proposition 4.1. 

A relevant example is where G.  consists of all the matrices 

g,l g12 g13~ 
g = 0 g22 g23/ " 

0 0 g33 / 

Let 3', = f loglg, ,  ldt~(g) for i = 1,2,3. We claim that if either 3', or 3'3 is the 

largest of the three numbers 3,1, 3'2, 3'3 then we will have stability in the sense of 

the foregoing theorems. For if 3', is the largest of the three, then the conditions 

of Theorem B' are fulfilled for /~. On the other hand, if y3 is the largest, the 

conditions of Theorem B' are fulfilled for the transposed measure 'tz, and since 

[3(/z) = [3 ( t ) ,  we obtain the same result. 

Consider now the case m = 2. There are three possibilities as regards the 

invariant subspaces for G. .  Either there are no non-trivial subspaces, or there is 

just one, or there are two invariant subspaces. (We omit the trivial case of scalar 

matrices.) In the first two cases we will have stability of [3 (/x) by Theorem B. In 

the third case there need not be stability, as the example of [5] shows. Namely, 

we can suppose that /z is concentrated in diagonal matrices 

Suppose 

f log4g, l[d~(g)#  f log[g22]dt~(g) 

and let / z E - - ( 1 - ~ ) / z  + e6k, where 6k is the point measure attached to the 

element k which we take to be 
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One verifies that/xE has a unique stationary measure on ~ and one is led to the 

formula 

(f loglgll[dp~(g)+ f loglg221dlz(g)). 
On the other hand, it is clear that 

fl(/~) = max ( f  loglgHId~(g), f "logfg22[d~(g)) , 
so that although/~---~ p~ as e--~0, f l ( /~)-~/3(p.) .  Finally if 

f loglg.ld~(g)=.f loglg2zldl~(g) 

then the conditions of Proposition 4.1 are satisfied, so that in this case we do, 

indeed, obtain stability. 

For m = 3 we have a more specialized result. Suppose the matrices of (3, have 

the form 
gll gt2 gl3~ 

g =  0 g22 g23] 
0 0 g33 / 

and that for some g E G. ,  g~2 ~ 0, g23 ~ 0. Then if 

f logIgll[d/z(g)>=max {f log,g22,dlz(g), f log,g33]d/z(g)} 

we can verify the conditions of Theorem B'. Thus in this case we will have 

stability. 

For  further discussion of stability with more restrictive conditions of con- 

vergence /zk ~ / ~  we refer the reader to [6]. 

5. Appendix. Comparison with the Oseledec decomposition 

In [8] Oseledec studies the rate of growth of products X,X,-I.." X~v for a 

stationary process {2(.}. This includes the situation we have studied, but the 

results are not quite the same. Oseledec considers the sequence {X, } fixed and 

regards the growth rate of ][X,X._,. �9 �9 Xlv 11 as a function of v. This leads to a 

" random"  decomposition of R"  exhibiting different growth rates. 

To illustrate the situation let us take an example when/~ is concentrated on 

upper-triangular 2 • 2 matrices 

-(0' ;:) 
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Let  a = E log la~l and b = E log lb, 1. According to [8] a and b will be two 

characteristic exponents and they have corresponding directions with approxi- 

mately e"" and e "b rates of expanding (contracting). 

The matrices X~ have the invariant subspace 

Clearly, 

(a a / 
(5.1) Yn = X n ' " X 1  = 0 b n " ' b l  " 

If a < b, then all vectors of F grow with the speed e ha, but any vector y ~ F grows 
as e rib, i.e., 

limllogllXn " ' , ,  "XlyH a_~ ~a if y ~F,  (5.2) 
n [ b if yffF. 

In this case the filtration given by Theorem 3.9 is the same as in [8]. 

If a > b then one direction in Oseledec's theorem is F and it is non-random. 

This direction corresponds to the growth rate of e ~". From (5.1) it is clear that the 

direction corresponding to the growth rate e"b is determined by the vector 

(::/ 
with 

z_, 

and it is random. If F is the only invariant subspace with respect to all g E supp/z 

(which is the generic case) then by Theorem B for any v E R"  with the 

probability 1, 

lim 1 logl lXn. .  " X l v  II = a 

and so the direction (5.3) coincides with a fixed direction with probability 0. 
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